Texture Analysis Research News


Texture Analysis in Research: Ageing Population
Texture Analysis in Research: Ageing Population

Scientists from the National Agriculture and Food Research Organisation, Japan, have been researching compression tests of soft food gels using a soft machine with an artificial tongue. Easy to eat food is increasingly required in the advanced-aged society in Japan. Mechanical properties of such foods must be modified such that the foods are easily broken by the tongue without chewing. When foods are compressed between the tongue and the hard palate, the tongue deforms considerably, and only soft foods are broken. To simulate tongue compression of soft foods, artificial tongues with stiffness similar to that of the human tongue were created using clear soft materials. The scientists in this study used their TA.XTplus Texture Analyser to perform compression tests on cylindrical samples. The fracture properties measured using the soft machine were better than those obtained from a conventional test between hard plates to mimic natural oral processing in humans. The fracture force on foods measured using this soft machine may prove useful for the evaluation of food texture that can be mashed using the tongue. Read more


Scientists from the Department of Food Science, University of Tennessee, have been investigating the characterisation of oral tactile sensitivity and masticatory performance across adulthood. In a society that is rapidly aging, it is important to understand the subtle changes in physiology and eating behaviour that are associated with aging. This study used a variety of tests of oral sensitivity to better understand which aspects of oral physiology are integral for effective chewing.

Two main measures of oral sensitivity were performed: to assess bite force, subjects were asked to discriminate between foam samples of varying hardness. Second, to assess lingual sensitivity the subjects were asked to identify 3D printed shapes using their tongue, as well as identify confectionery letters. Additionally, masticatory performance was measured through assessing each participant’s ability to mix two‐coloured chewing gum. The researchers used their TA.XTplus Texture Analyser to verify sample hardness levels.

Sensitivity and masticatory performance in the younger age groups was superior to that of older adults but results suggested that age‐related declines in bite force sensitivity were not a significant cause of altered masticatory performance. This study represents a valuable first step in showing that bite force sensitivity does not depend on age, and the minimal influence of factors such as oral sensitivity on masticatory performance. Read more


By 2025, the world will have almost 800 million people over the age of 65.

The UN estimates that the global population age 60+ will soar from 11% in 2000 to 22% by 2050.

While age is just a number, the numbers are certainly on the rise. Yet another challenge is that sensory perceptions necessary for the palatability of food – sight, touch, smell, and taste – diminish as humans age.

Taste is the most important factor for all consumers, but texture of food products may be a greater concern for older consumers than younger ones because of difficulty in chewing and swallowing.

How can texture analysis help? Request our article on Designing foods with specific health claims for an ageing population


Designing the best potato chip

Researchers have developed a method to analyse the physical characteristics of a potato chip at four stages of eating — from the first bite to the final swallow — to help formulate a tastier low-fat snack. The results of the research have been reported in the Journal of Agricultural and Food Chemistry.

While munching on low-fat potato chips might reduce the guilt compared with full-fat versions, many people don’t find the texture as appealing. Cutting fat in potato chips usually involves reducing the vegetable oil content but it’s the oil that helps give the product its characteristic crunch, taste and mouthfeel.

Texture perception is conceptualised as an emergent cognitive response to food characteristics that comprise several physical and chemical properties. When food scientists formulate a new low-fat chip, they often rely on trained sensory panellists to tell them how well the new snack simulates the full-fat version. This process can be expensive, time-consuming and often subjective, since perceptions can vary based on factors like a person’s saliva flow rate and composition

Read more about what mechanical testing was performed in this research and how the new technique to link physical measurements with sensory perceptions could be used.


Meanwhile, scientists from the Korea Food Research Institute have been researching the prediction of sensory crispness of potato chips using a reference-calibration method. Reference calibration is a useful technique when sensory evaluation is not feasible or practical. This study was conducted to predict the crispness perception of potato chips evaluated by instrumental means through the reference-calibrated method. They used their TA.XTplus Texture Analyser to perform compression and three-point bend tests. The relationship between the instrumental graph area and the sensory crispness of the standard references was found to be nonlinear over the standard crispness scale but the Fechner model was suitable for predicting the sensory crispness of chips. This study suggests that standard references with a reference-calibration method can be used to calibrate the crispness of potato chips.

Read more


Designing the best potato chip

Texture Analysis in Research: Medical Applications
Texture Analysis in Research: Medical Applications

Scientists from the Thomas More University of Applied Sciences have been researching the use of a Texture Analyser to objectively quantify foot orthoses.

Foot orthoses alter the kinematics and kinetics of gait. With increasing importance of evidence-based practice and with the permanent development of subtractive manufacturing and introduction of additive manufacturing, there is a growing need for the quantification of orthoses parameters. This paper describes a measurement method and protocol to quantify different parameters of a foot orthosis. They used their TA.XTplus Texture Analyser to perform indentation tests on orthoses. Results showed the added value of the proposed technique as the parameters were not only defined by the material, but also by the shape.

Download the research paper


Meanwhile, scientists from Arizona State University have been researching light-activated tissue-integrating sutures (LATIS) as surgical nanodevices.

Sutures are typically the primary means of soft tissue repair in surgery and trauma. Despite their widespread use, sutures do not result in immediate sealing of approximated tissues, which can result in bacterial infection and leakage. Non-absorbable sutures and staples can be traumatic to tissue, and the trauma can be exacerbated by their subsequent removal. Use of cyanoacrylate glues is limited because of their brittleness and toxicity.

In this work, laser‐activated tissue‐integrating sutures are described as novel nanodevices for soft tissue approximation and repair. They used their TA.XTplus Texture Analyser to perform tensile tests on fibre samples. The results of this study indicated that LATIS‐facilitated approximation of skin in live mice synergises the benefits of conventional suturing and laser‐activated tissue integration, resulting in new approaches for faster sealing, tissue repair, and healing.

Read more


Scientists from the University of Michigan have been investigating the mechanics of scaling-up multichannel scaffold technology for clinical nerve repair.

Peripheral nerve injury remains a large clinical problem, with challenges to the successful translation of nerve repair devices. One promising technology is the multichannel scaffold, a conduit incorporating arrays of linear microchannels, which has high open lumen volume to guide regenerating nerves towards distal targets.

To maximise open lumen volume, and scale-up scaffolds for translation, this study explored how mechanical properties were affected by material choice, microstructure and channel architecture. They used their Texture Analyser TA.XTplus to perform tests in compression and tension. The study demonstrated significant progress towards translation and will bring multichannel technology closer to the clinic.

Read more


3D printed food

Personalisation has been pointed as the driving force to disrupt traditional ways to produce and deliver food.

Three-dimensional food printing (3DFP) is constantly associated as a potential alternative to achieve personalisation and enchant a variety of customers.

By means of extrusion-based 3DFP, for example, three main features can be acquired that cannot be done using conventional casting methods of paste-like materials: (1) the design of internal structures (infill percentages and internal variations of the nutritional content); (2) encapsulation of probiotics, vitamins and nutrients; and (3) freshly mixing of ingredients to ensure the ideal texture within a complex 3D construct (in dual or multiple nozzle systems). An Introduction to the Principles of 3D Food Printing is a book that has just been published which uses a Texture Analyser to measure the properties of such solid food constructs. This chapter focusses on reporting the different types of 3D printing techniques and assessment of printing quality. Insights were given on the choice of the 3DP technique, based on the material properties, applicability and postprocessing requirements.

Read more


Researchers from the University of Queensland have been investigating the textural modification of 3D printed dark chocolate by varying internal infill structure. They used their TA.XTplus Texture Analyser to perform textural characterisation of the samples with a knife blade. A higher force was required to break samples with a higher infill percentage. This technique was found to be a powerful tool in controlling the mechanical properties of 3D printed food in general.

Read more


Meanwhilte, researchers from the Chinese Academy of Agricultural Sciences have been investigating the application of soy protein isolate and hydrocolloid based mixtures as promising food materials in 3D food printing. Rheological properties, printability and 3D printed geometries of soy protein isolate mixtures with sodium alginate and gelatin were investigated. The SPI and their mixtures showed shear thinning behaviour and can be used as an ideal material for 3D printing. The mechanical properties of printed protein mixture cylinders were investigated using their TA.XT2i Texture Analyser. The addition of sodium alginate and gelatin to SPI were found to cause no chemical cross-linking between protein subunits during mixing and 3D printing at 35°C, while improving the hardness and chewiness of 3D printed geometries. The overall results suggested that the food matrix of SPI, sodium alginate and gelatin will be a promising material in 3D food printing.

Read more


Food materials for FDM printing should have adequate rheological properties that can be easily extruded and maintain their shape. However, there are very few foods that meet this condition and it is still a challenge to process many food materials to be applicable to this method. Vegetables are a typical non-printable traditional food material due to their excessive moisture and low carbohydrate content, and lack of proteins that give proper rheological properties. Scientists from the College of Life Science and Biotechnology, Korea University, have been researching the effect of particle size on the 3D printing performance of the food-ink system with cellular food materials. Recently, there has been increased interest in the 3D printing of food due to the availability of design freedom of texture, shape, composition, taste and flavour. Fused deposition modelling (an extrusion-based technology) is the most commonly-used technique for food fabrication. They used their TA.XTplus Texture Analyser to perform Texture Profile Analysis and standard compression tests. The results obtained in this study suggest that increasing the particle size of the incorporated food powder can achieve efficient mechanical strength increase. This may be useful in determining parameters which are required to prepare the food-ink system such as the milling time and the maximum incorporation content of the food powder.

Read more


For application in the meat industry, scientists from the University of Queensland have been researching the post-processing feasibility of composite-layer 3D printed beef. Post-processing feasibility studies the integrity of the designed internal and external structures of 3D printed products. This study examined the effect of infill density and fat content on the post-processing physical changes and texture of lean meat-lard composite layer 3D printed meat products cooked sous-vide. They used their TA.XTplus Texture Analyser to perform puncture tests and Texture Profile Analysis. Overall, increasing the fat content (or lard layers) resulted in higher cooking loss, shrinkage, and cohesiveness, and lower fat retention, moisture retention, hardness, and chewiness. On the other hand, an increase in infill density led to higher moisture retention with lower shrinkage and cohesiveness, resulting in higher hardness and chewiness.

Read more

3D printed food

Why measure just one parameter when you can measure several?
Why measure just one parameter when you can measure several?

Apricots have a short storage life principally caused by a rapid softening, which increases the sensitivity of the fruit to mechanical damage, and to the development of fungal diseases.

The current methods to assess fruit firmness give limited information on the evolution and the mechanisms of softening. Scientists from the Agroscope Research Centre have been researching a multi-parameter approach for apricot texture analysis. With the aim of developing novel strategies to better monitor fruit softening, a multi-parameter approach measuring textural properties was evaluated and compared to a reference method whose results are obtained from a unique parameter.

Quantitative measurement of texture is essential to ensure an optimal commercial quality of apricots on the market and to characterise the mechanisms involved in the evolution of this parameter before and after harvest. Thanks to a better understanding of the textural properties of apricots and their changes as the fruit ripens, quality for the consumers could be improved and losses reduced along the entire supply chain.

They used their TA.XTplus Texture Analyser to determine whole fruit firmness using a compression test. Measurements performed with the TA.XTplus Texture Analyser allowed a multi-tests approach that described more precisely the influence of cultivar and storage conditions on different textural properties of the fruit. This instrument gives whole curves from which parameters can be computed. This has the advantage that the evaluation of the influence of the different factors can be done based on the whole curves or only on the extracted parameters. Unlike measurements performed on an AGROSTA®100 device on a small surface of each fruit, compression tests are done on the whole fruit. This test gives information on the viscoelastic properties of the apricot, which is particularly useful for predicting its ability to resist to pressure forces occurring during the post-harvest handling of the fruit (during transport for example). Also, the results obtained by puncture tests allowed more precise evaluation of the influence of the storage conditions on the textural properties of the skin and the flesh. Moreover, texturometry allowed more detailed analysis of the properties of the skin which were not correlated with the firmness obtained with the manual device.

The results showed that this multi-parametric approach allows detailed evaluation of the apricots’ textural properties – after all why settle for an instrument that measures one parameters when you can benefit from a single universal instrument that has a multitude of texture measurement solutions?

Read more about this research


Read our article ‘A world of food development possibilities with fruit’which presents a wide range of different texture measurements using the Texture Analyser on fruit ranging from dried, pureed, whole or processed. Request this article


3D printing applications

At the University of Milan scientists have been researching 3D printed multi-compartment capsular devices for two-pulse oral drug delivery.

The resistance to deformation of printed and moulded capsular devices was measured under compression using their TA.XTplus Texture Analyser.

This study helped to develop delivery methods for enhanced customisation of drug combinations.

Read more


Orodispersible films (ODFs) are promising dosage forms for children or elderly people. By printing active pharmaceutical ingredients onto orodispersible films, the flexibility of drug dosing is increased and provides potential for personalised medicines. Scientists from Heinrich Heine University Dusseldorf have been researching printing methods for pharmaceuticals by inkjet technology. This study deals with the technology transfer from a small-scale inkjet printing system to a pilotscale process. They used their Texture Analyser TA.XTplusto measure the elongation to break and puncture stress of the samples, both of which were affected by the number of layers and the amount of ink used. The results showed that multiple printing has a huge impact on the mechanical properties of the film, leading to the conclusion that the ink formulation and the number of printed layers should be carefully selected. The continuous ODF production with direct printing enabled various printing concepts, which may serve for individualised dosing in personalised medicine treatment in the near future.

Read more


Meanwhile scientists from Åbo Akademi University have been researching additive manufacturing of personalised orodispersible warfarin films. Warfarin is a narrow therapeutic index drug that requires personalised dosing which is currently not achieved by marketed products. Further, paediatric and geriatric patients may face swallowing problems with solid oral dosage forms. To face these issues, the aim of the present study was to investigate semisolid extrusion 3D printing for production of warfarin containing orodispersible films. They used their TA.XTplus Texture Analyser to determine the burst strength and flexibility of the films. Extrusion 3D printing was successfully utilised to produce transparent, smooth and thin, yet flexible and strong orodispersible films containing therapeutic doses of warfarin. Excellent linearity between the designed sizes of the films and the drug contents was achieved indicating semisolid extrusion 3D printing as a promising way to produce orodispersible warfarin films with personalised doses.

Read more


In Switzerland, researchers from ETH Zurich have been investigating 3D printing of a wearable personalised oral delivery device. Despite the burgeoning interest in three-dimensional (3D) printing for the manufacture of customisable oral dosage formulations, a U.S. Food and Drug Administration–approved tablet notwithstanding, the full potential of 3D printing in pharmaceutical sciences has not been realised. In particular, 3D-printed drug-eluting devices offer the possibility for personalisation in terms of shape, size, and architecture, but their clinical applications have remained relatively unexplored. These researchers used 3D printing to manufacture a tailored oral drug delivery device with customisable design and tunable release rates in the form of a mouthguard and, subsequently, evaluated the performance of this system in the native setting in a first-in-human study. They used their TA.XTplus to determine the tensile strength of the filaments. The elastic modulus was calculated from the slope of the stress-versus-strain curve in the linear region. This proof-of-concept work demonstrates the immense potential of 3D printing as a platform for the development and translation of next-generation drug delivery devices for personalised therapy.

Read more

3D printing

Packaging
Alternative packaging

Due to consumers now hating plastic, waste companies are being forced to find alternative solutions.

The holy grail of packaging development is now to present a recyclable, compostable, biodegradable and environmentally friendly solution which does not compromise on packaging integrity and desired performance.

Researchers from the National University of Trujillo have been investigating biodegradable foam trays based on starches isolated from different Peruvian species. In this study, sweet potato, oca, and arracacha starches were used to produce foam trays by a thermopressing process as a sustainable alternative to expanded polystyrene. They used their TA.HDplus Texture Analyser to determine the tensile strength and elongation of the trays according to ASTM D828-97. Arracha starch was found to produce trays with low density, good mechanical resistance and thermal stability, whereas sweet potato and oca starch produced foam trays with the highest mechanical resistance.

Read more


Food consumption trends and packaging technologies are developing quickly, with environmental concerns driving product advancements and shift in consumer demand trends. Researchers from the National University of La Plata have been investigating edible flavoured oven bags for cooking meat based on proteins. There are several brands in the market that sell oven bags for cooking based on different synthetic polymers. Those intended for cooking meat would have the advantage of maintaining the authentic flavour of the food, since they would retain their natural aromas, minerals and vitamins. They also avoid the use of cooking oil and keep the oven clean once the bag is removed together with the food. This work deals with the activation of protein films with a flavouring and their evaluation as oven bags for cooking meat. They used their TA.XT2i Texture Analyser to measure heat seal strength according to ASTM F88-00. The same instrument was used to measure the texture of cooked chicken meat. Bags made with soybean protein isolates successfully resisted cooking, but those made with bovine gelatin disintegrated during cooking. Furthermore, soybean protein bags transferred the flavour to chicken meat during cooking, without affecting their texture and water content.

Read more


Cosmetics applications

Here are several examples of the use of Texture Analysis in cosmetic product development...

Researchers from Chanel Beauty Perfumes, Beauty and Innovation Research, have been investigating the relations between the sensory properties and fat ingredients of lipsticks.

Lipstick is a flagship make-up product with over 900 million units sold per year worldwide, including 300 million in Europe. It is the best-selling cosmetic product.

Although a consumer will buy a lipstick according to the colour and the make-up effect, she will only buy the same one again if she is attracted by the sensory nature of the product. Sensory properties such as slipperiness, smoothness, thickness of the coating, and a moisturising sensation are strategic criteria in repeating the purchase.

The lipstick bending force was measured using a TA.XTplus Texture Analyser coupled with a Lipstick Cantilever Rig. The results of this study confirm the major role of the viscosity of oils and the wax used in the formula on the sensory and mechanical properties of the lipstick. It is therefore possible to modify the sensory properties, for example to adjust the shininess of a lipstick, without altering its mechanical resistance. This opens up opportunities for developing innovative sensory textures in short lead times.

Click or tap here to read more...

Meawhile, scientists from Normandy University have been researching the prediction of residual film perception of cosmetic products using an instrumental method and non-biological surfaces, with the example of stickiness after skin application..

The cosmetics market is very competitive, with a huge number of attractive products. To be distinguished from competitors, a cosmetic product has to be efficient but also pleasant to use, through its colour, fragrance and texture. The aim of this work is to investigate how residual sensory properties of cosmetic products can be predicted without using a panel of assessors, focusing on the residual film attribute “stickiness”.

They used their TA.XTplus Texture Analyser to evaluate the adhesive property of residual film samples. Results strongly suggested that the physical stimulus responsible for cosmetic film stickiness can be instrumentally measured on both in vivo skin and artificial skin.

Click or tap here to read more...

Texture Analysis in research: Cosmetics applications

Substitution and supplementation in bakery products
Substitution and supplementation in bakery products

In the bakery industry, formulations continue to be tested that replace an ingredient (such as gluten) or supplement (e.g. soybean or soy protein) to enhance a product.

The following are recent publications highlighting the use of a texture analyser to measure the effects of such formulation change.

Scientists from Nanjing University of Finance and Economics have been researching the effects of whey and soy protein addition on the rheological properties of wheat dough.

Since it is known that the gluten network is responsible for viscoelastic properties in wheat dough and for dough structure strength and gas retention, most studies reported that enrichment of foreign proteins interfered with gluten development and so had negative effects on bread quality. This study compared the effects of whey and soy proteins on the thermomechanical, dynamic rheological and microstructural properties of wheat dough and bread-making quality in a relatively wide range of protein addition (0–30%).

They used their TA.XT2i Texture Analyser to perform texture profile analysis on breadcrumbs. The results suggested that selection of the protein source and amount with appropriate functionalities significantly affected the structure of the dough and quality of the bread.

This study is essential for product development and process control when considering the popularity of protein fortified bakery products.

To read more, click or tap here...


Researchers from Monterrey Institute of Technology have been investigating rheology, acceptability and texture of wheat flour tortillas supplemented with soybean residue.

Dry soybean residue is a by-product rich in dietary fibre and protein with high levels of essential amino acids. This study investigated the effects of the substitution of refined wheat flour with dry soybean residue in dough rheology and hot-press tortilla texture, dimensions, colour, protein and dietary fibre contents.

They used their TA.XT2i Texture Analyser to perform texture profile analysis on optimally developed doughs. Results indicated that wheat flour tortillas with 10% soybean residue were an excellent alternative to regular counterparts owing to their higher dietary fibre and protein quantity and quality.

To read more, click or tap here...


Scientists from the University of Bologna have been researching the influence of the addition of soy product and wheat fibre on rheological, textural, and other quality characteristics of pizza.

In this work, the effects of using new ingredients (e.g., soy paste, wheat fibre) on the rheological, textural, physicochemical, nutritional, and organoleptic characteristics of an enriched pizza type were investigated both at laboratory and industrial levels using their TA.HDi Texture Analyser to perform physical testing on dough samples. The new pizza provides a product that combines solid technological performances, in terms of rheological properties and dough elasticity, with improved and balanced nutritional quality, thanks also to the ingredients used in the topping.

Results demonstrate the possibility of obtaining new pizza products characterised by nutritional and sensorial properties tailored for different groups of consumers.

To read more, click or tap here...


A patent has also recently been released by Campbell Soup Company, entitled ‘Gluten Free Compositions and Methods for Producing Shelf-Stable Breads and Other Bakery Products’.

New bread flour substitute compositions were outlined including starch and hydrocolloid blends. The freshness (staling) of bread is generally monitored by measuring the changes in firmness of loaf over its shelf life, and their TA.XTplus Texture Analyser was used to perform these measurements according to the AACC method. Amylose reduced gluten free breads were found to have consistently lower firmness values than the control gluten free bread.

To read more, click or tap here...


Testing coronary stents

Scientists from Nantes University Hospital have been researching standardised bench test evaluation of coronary stents and their biomechanical characteristics.

The purpose of the study was to develop a standardised and global bench test protocol to evaluate the biomechanical characteristics of the most currently used drug‐eluting coronary stents. The use of coronary stents has contributed to the reduction of cardiovascular mortality but can be associated with specific complications. Improving the biomechanical matching between the stents and the coronary anatomy may reduce these complications.

Flexibility (crimped and deployed stents) and longitudinal and radial resistances were evaluated using a TA.HDplus Texture Analyser. Biomechanical characteristics were significantly different for all tested devices. This should be taken into consideration to select the most appropriate device for each clinical situation.

Click or tap here to read more...

Stent comperession test

Comparing cartilage constructs
Cartilage scaffold

Scientists from the Swiss Federal Institute of Technology in Zürich have been performing a comparative study of cartilage engineered constructs in immunocompromised, humanised and immunocompetent mice.

Choosing the best ectopic in vivo model for cartilage engineering studies remains challenging and there is no clear consensus on how different models compare to one another. The use of xenogenic cells can often limit the choice to immunocompromised animals only and so prevents the understanding of how tissue-engineered grafts perform with potential active inflammatory and immunological responses.

The aim of this study was to evaluate the chondrogenic potential of a recently developed hydrogel in four mouse strains with varying immune systems. Scaffolds were tested under unconfined compression using their TA.XTplus Texture Analyser. The results of this study showed that it is possible to engineer a cartilage-like graft subcutaneously not only in immunocompromised, but also in immunocompetent and humanised mouse models.

To read more, click or tap here...


Testing films for wound healing applications

Researchers from the Federal University of Pelotas have been investigating a polysaccharide-based film loaded with vitamin C and propolis as a promising device to accelerate diabetic wound healing.

Wound healing can be a painful and time-consuming process in patients with diabetes mellitus. In light of this, the use of wound healing devices could help to accelerate this process. In this research, cellulose-based films loaded with vitamin C and/or propolis, two natural compounds with attractive properties, were engineered.

Mechanical properties were investigated by tensile testing using a TA.XT2 Texture Analyser. The results of this study showed that these novel eco-friendly films may represent a new therapeutic approach to accelerate diabetic wound healing.

Click or tap here to read more...

Film tensile test

Edible packaging examined
Testing multiple film samples

At the grocery store, most foods — meats, breads, cheeses, snacks — come wrapped in plastic packaging.

Not only does this create a lot of non-recyclable, non-biodegradable waste, but thin plastic films are not great at preventing spoilage – and some plastics are suspected of leaching potentially harmful compounds into food. Current food packaging is mainly petroleum-based, which is not sustainable. It also does not degrade, creating tons of plastic waste that sits in landfills for years – an issue that is now weighing heavily on the minds of all consumer after recent documentaries.

To address these issues, scientists are now developing a packaging film made of milk proteins — and it is even edible. To create an all-round better packaging solution, Dr Peggy Tomasula and colleagues at the U.S. Department of Agriculture are developing an environmentally friendly film made of the milk protein casein. These casein-based films are up to 500 times better than plastics at keeping oxygen away from food and, because they are derived from milk, are biodegradable, sustainable and edible.

Some commercially available edible packaging varieties are already on the market, but these are made of starch, which is more porous and allows oxygen to seep through its micro-holes. The milk-based packaging, however, has smaller pores and can thus create a tighter network that keeps oxygen out. After a few additional improvements within their research, this casein-based packaging looks similar to store-bought plastic wrap, but it is less stretchy and is better at blocking oxygen.

The material is edible and made almost entirely of proteins. Nutritious additives such as vitamins, probiotics and nutraceuticals could be included in the future. It does not have much taste, the researchers say, but flavorings could be added. In addition to being used as plastic pouches and wraps, this casein coating could be sprayed onto food, such as cereal flakes or bars.

Right now, cereals keep their crunch in milk due to a sugar coating. Instead of all that sugar, manufacturers could spray on casein-protein coatings to prevent soggy cereal. The spray also could line pizza or other food boxes to keep the grease from staining the packaging, or to serve as a lamination step for paper or cardboard food boxes or plastic pouches.

A fascinating video can now be watched that shows how this packaging is created and works...


Testing mechanical strength of membranes

Scientists from Mercer University (Macon, GA, USA) have been researching the effect of ablative lasers on in vitro transungal delivery.

They used their TA.XTplus Texture Analyser to measure the mechanical strength of membranes after ablation using a needle penetration technique. The laser was found to disrupt the nail sufficiently to allow for permeation of methotrexate, which is otherwise challenging due to its high molecular weight and low permeability.

Methotrexate is helpful in the treatment of nail psoriasis, so this study is key in showing that transungual methotrexate delivery is enhanced by fractional laser ablation.

Click or tap here to read more...

Film tensile test

Measuring the injectability of hydrogel samples
Syringe expulsion force test

Scientists from Queen’s University Belfast have been researching the influence of an alginate backbone on the efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery.

They used their TA.XTplus Texture Analyser to measure the injectability of hydrogel samples. The study developed an injectable and thermo-responsive hydrogel formulation for localised gene delivery.

This helped to find an optimal Alg-g-P(NIPAAm) hydrogel with respect to localised delivery of DNA nanoparticles as a potential medical device for those with castrate resistant prostate cancer.

To read more, click or tap here...


Lipstick sensory properties

Researchers from Lubrizol Advanced Materials have been investigating the prediction of lipstick sensory properties with lab tests.

Sensory perceptions and performance are important to the success of a lipstick formulation, but in‐vivo evaluation can be expensive and time‐consuming. The goal of this work was to develop and use lab test methods to predict the sensory and performance properties of lipstick.

The researchers used their TA.XTplus Texture Analyser to perform a tack test on the samples. The emollient was found to have a significant effect on the sensory and performance properties of a lipstick, which can be predicted with the developed laboratory tests.

The methods presented may help to speed up the development and optimisation of future lipstick formulations.

Click or tap here to read more...

Applying lipstick

Measuring the stickiness of adhesive tapes
Adhesive tape peel

Researchers from 3M Corporate Research Materials Laboratory have been investigating the anatomy of the deformation of pressure sensitive adhesives from rigid substrates.

The extent of the deformation of any pressure sensitive adhesive (PSA) during debonding, which is independent if the failure occurs under tensile, shear or peel modes, has been widely recognised as a critical factor determining its capacity to instantly bond, hold a load or resist debonding.

This paper attempts to decouple the three mechanistic steps of the lifetime of a pressure sensitive adhesive, namely bonding, holding, and debonding.

The researchers used their TA.XTplus to obtain debonding profiles in a 90 degree peel testing mode, focussing on the adhesive high strain modulus (as dictated by its crosslinking level), the peel rate and the substrate surface free energy. The experimental results suggest that both substrate surface energetics and bulk properties intrinsic to large deformation of viscoelastic materials must be considered when investigating PSAs debonding phenomena.

To read more, click or tap here...

Adhesives are used everywhere, but how do we know how good they are or which one to use? Let’s outline some of the methods now used to put tapes through their paces.

The value of the world market for self-adhesive tapes is set to expand at an annual pace of around 6.3% over the next few years, reaching $69 billion by 2022. Opportunities abound across an array of industries, from packaging and non-residential construction to electronics manufacturing.

Proven high performance will allow adhesive tapes to continue to compete against other joining, bonding and sealing technologies. However, as pressure on quality control departments steps up, it is essential to be able to assess accurately adhesive properties and strength to determine the ideal components for a particular tape and so optimise its performance.


3D printing of food

3D printers — machines that can fit on a desktop and create 3D objects from plastics, metals, and other raw materials — can do just about anything.

High-precision jets pump out custom medical implants at the press of a button. Carbon-fibre printers spit out automobile prototypes with jaw-dropping precision. And off-the-shelf modellers generate custom toys, jewellery, home decorations, and clothes with no more than a digital file.

But there’s a new frontier in 3D printing that’s only beginning to come into focus: food. Recent innovations have made possible machines that print, cook, and serve foods on a mass scale. Industry leaders think 3D food printers could improve the nutritional value of meals, produce intricate sculptures out of everyday foodstuff, and solve hunger in regions of the world that lack access to fresh, affordable ingredients. There’s no doubt about it — 3D food printing has come a long way. Here’s the latest in food research that is using 3D printing and the TA.XTplus Texture Analyser to measure the results.

Scientists from The University of Queensland have been researching the optimisation of chocolate 3D printing by correlating thermal and flow properties with 3D structure modelling. They used their TA.XTplus Texture Analyser, along with a custom break probe, to measure the snap force of 3D printed chocolate. The breaking strength of the samples was found to be strongly related to the support structure of the chocolate. This study demonstrated the use of flow enhancer and the inclusion of a support structure in the designed shape were key factors influencing printability capacity of chocolate.

To read more, click or tap here... 

Meanwhile, at the University of Jiangnan, scientists have been investigating the creation of internal structure of mashed potato construct by 3D printing, and its textural properties. Although it is relatively a new area of research, most of the papers about 3D food printing have been focusing on the materials' properties or the printing variables on the 3D printing performance. Previous to this paper, limited information on the modified texture properties of printed samples is available, although the 3D printing technique has the ability to change the internal structure of printed objects by varying infill pattern and infill percentages.

In this study, texture attributes of hardness and gumminess were obtained by texture profile analysis using a TA.XT2 Texture Analyser. The study confirmed that 3D printing has a potential to modify the textural properties of 3D printed samples through varying the infill percentage and the printing paths to fill the object, which possibly provides a novel way of tailoring textural properties of manufactured foods.

To read more, click or tap here... 

Now that 3D-printing technology has become more vital and relevant than ever, Silicon Valley BeeHex has harnessed this technology (funded by a grant from NASA), to 3D print pizza. The purpose of this invention was to create a way for astronauts to select and product delicious food for themselves on missions.

As manned missions to Mars become an ever-increasing possibility, astronauts might be spending much more time in space. To save space-goers from the drudgery of choking down freeze-dried, pre-packaged “space food” day after day, month after month, NASA decided it was time to develop a way to cook in space.

As usual, they will need to make sure that all the key aspects of consumer satisfaction of the resulting printed food are in place and this is where a Texture Analyser comes in!

3D printer

Measuring the stickiness of adhesive tapes
Adhesive tape peel

Researchers from 3M Corporate Research Materials Laboratory have been investigating the anatomy of the deformation of pressure sensitive adhesives from rigid substrates.

The extent of the deformation of any pressure sensitive adhesive (PSA) during debonding, which is independent if the failure occurs under tensile, shear or peel modes, has been widely recognised as a critical factor determining its capacity to instantly bond, hold a load or resist debonding.

This paper attempts to decouple the three mechanistic steps of the lifetime of a pressure sensitive adhesive, namely bonding, holding, and debonding.

The researchers used their TA.XTplus to obtain debonding profiles in a 90 degree peel testing mode, focussing on the adhesive high strain modulus (as dictated by its crosslinking level), the peel rate and the substrate surface free energy. The experimental results suggest that both substrate surface energetics and bulk properties intrinsic to large deformation of viscoelastic materials must be considered when investigating PSAs debonding phenomena.

To read more, click or tap here...

Adhesives are used everywhere, but how do we know how good they are or which one to use? Let’s outline some of the methods now used to put tapes through their paces.

The value of the world market for self-adhesive tapes is set to expand at an annual pace of around 6.3% over the next few years, reaching $69 billion by 2022. Opportunities abound across an array of industries, from packaging and non-residential construction to electronics manufacturing.

Proven high performance will allow adhesive tapes to continue to compete against other joining, bonding and sealing technologies. However, as pressure on quality control departments steps up, it is essential to be able to assess accurately adhesive properties and strength to determine the ideal components for a particular tape and so optimise its performance.


Research into organically-based films

At The Central University of Venezuela in Caracas, researchers have been researching active and intelligent films made from starchy sources and blackberry pulp.

They used their TA.XT2i Texture Analyser to carry out uniaxial tensile tests on the films. The high toughness of films derived from plantain starch make them extremely useful for packaging, as they could be used to produce films that absorb more energy without this being transmitted to the packaged foods. This could minimise the damage caused by impacts to the food during transport and storage.

To read more, click or tap here... 

Meanwhile, at the Horticultural Crops Technology Research Department, Giza, researchers have been investigating utilisation of orange wastes for production of value added products.

They used their TA.XTplus Texture Analyser to measure the texture of osmotically dehydrated cubes of orange peel. After manufacture, waste from orange juices, concentrates and jam leave 10-15% waste out of the total production.

This waste is a bad source of pollution, insects, and rats especially when left inside factories without removal. This study helped to develop the use of this waste in producing new products.

To read more, click or tap here...

Tensile test on film

Japanese scientists probe the mysteries of food texture
Eating a burger

Food companies are watching with keen interest as researchers in Japan delve into the nuts and bolts of sensations like "crispness" and "springiness". Their findings are expected to lead to new and more appetising products. 

Taste, aroma and appearance are important factors in determining the appeal of foods, but the finer details of the dining experience are still little understood. The researchers are working to uncover the secrets of food texture by gathering data on "mouthfeel" and the microstructures of various ingredients.

Takashi Nakamura, a professor at Meiji University in Tokyo, is conducting studies on the springy textures of various kinds of starch.

Each type has its own characteristics. Tapioca, commonly found in bead-shaped form in Asian milk tea drinks, and "waxy cornstarch," used as a thickener in Japanese sweets, are different forms of starch. Their chewiness is similar, but the "waxy" form is easier to bite through, while tapioca has greater elasticity. The experience of eating them is filtered through the senses, so formulating a numerical index presents a challenge.

Quantifying 'crispy' and 'chewy' points the way to new and better products, according to Rimi Inomata of the Nikkei Asian Review.


Measuring peelability

Researchers at the Technical University of Denmark have developed a novel, standardised method that can provide a quantitative description of shrimp peelability.

The peeling process was based on the measure of the strength of the shell-muscle attachment of the shrimp using their TA.XTplus Texture Analyser, and calculated into the peeling work. The self-consistent method, insensitive of the shrimp size, was proven valid for assessment of ice maturation of shrimps.

The quantitative peeling efficiency (peeling work) and performance (degree of shell removal) showed that the decrease in peeling work correlated with the amount of satisfactory peeled shrimps, indicating an effective weakening of the shell-muscle attachment.

The developed method provides the industry with a quantitative analysis for measurement of peeling efficiency and peeling performance of shrimps. It may be used for comparing different maturation conditions in relation to optimisation of shrimps peeling.

This is yet another area in which the capabilities of texture analysis help food manufacturers and suppliers understand the detailed properties of their products.

Click or tap here to read more...

Shrimps on platter

Helping to make eating easier for older people
Older shopper

The boom of 2 billion people over the last century has resulted in an ageing world population.

By 2025, the world will have almost 800 million people over the age of 65. About 556 million of them will be in developing countries, another 254 million in developed ones. In fact, the United Nations estimates that the global population age 60+ will soar from 11% in 2000 to 22% by 2050. While age is just a number, the numbers are certainly on the rise.

Texture is often taken for granted. The acts of chewing (mastication) and swallowing play a huge role not only in nutrient intake, but also in an enjoyable eating experience. This becomes difficult when dental health starts to degrade and salivary flow diminishes. Missing teeth and wearing dentures both impact the act of chewing and decrease biting forces.

Chewing efficiency can also be affected by a decrease in biting and chewing forces attributed to age-related changes in muscle strength. About 40% of elderly people have difficult chewing and swallowing food, and this difficulty has an obvious flow on effect for their health in terms of nutrition, wellbeing, and general quality of life.

Scientists from Ruakura Research Centre have been investigating novel meat-enriched foods for older consumers.

They used their TA.XTplus Texture Analyser to measure bread texture and ice cream meltability. The study helped to develop products that elders could readily consume to meet nutrition requirements and address some of the common ailments associated with aging, such as loss of muscle mass and strength.

To read more, click or tap here... 

Meanwhile, at Université Bourgogne Franche-Comté, scientists have been researching the relationships of oral comfort perception and bolus properties in the elderly for sponge cake and brioche.

They used their TA.XTplus Texture Analyser as a capillary rheometer by equipping it with a cylindrical piston with a capillary die attached to the bottom along with a cylindrical barrel. Boli were loaded into the capillary die immediately after collection from human subjects.

They found that for soft aerated cereal foods, stimulated salivary flow rate is the most important physiological variable that impacts the food bolus properties and the perception of oral comfort in the elderly, even more than the dental status. However, increasing the amount of fat seemed to lower the role of the stimulated flow rate and bolus hydration, likely by increasing lubrication. This highlighted the importance of the hydration and lubrication mechanisms in the oral processing and enjoyment of eating for this type of product in the elderly.

Click or tap here to find out more... 

How to make food more palatable while still easy to swallow is an area of ongoing research. By applying rheology, developing new texture models, and looking at the nutrition and swallowing behaviour of foods, a more scientific approach can be brought to the formulation and design of novel texture-modified food.


Looking into edible insect ingredients

At the Institute of Agrochemistry and Food Technology, Valencia, scientists have been investigating insects as ingredients for bakery goods.

Due to a rising demand for proteins, the food industry is considering new alternative protein sources that can be used for human food. The aim of this research was to explore the potential use of insect flour as a protein-rich ingredient for bakery products.

The insects were ground and used to replace 5% of the wheat flour in doughs and breads. This affected rheological properties of the dough during mixing but did not significantly affect specific volume or texture. They used their TA.XTplus Texture Analyser to perform TPA tests on central bread slices.

To read more, click or tap here... 

Meanwhile, scientists from the University of Foggia have been researching the printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Mechanical properties of 3D printed snacks were measured using their TA.XTplus Texture Analyser.

Printed snacks reproduced the overall structure of the designed object with sufficient fidelity. However, the addition of different levels of ground larvae of yellow mealworms modified the printability of dough, changing morphological and microstructure properties of raw snacks.

The overall results suggested that together with wheat flour, ground yellow mealworm could be a suitable ingredient to manufacture 3D printed foods with specific designs and improved nutritional quality without adverse impact on technological quality.

To find out more, click or tap here... 

Scientists from California State Polytechnic University have also been researching the effects of edible insect ingredients on the physicochemical and sensory properties of extruded rice products. They used their TA.XTplus Texture Analyser to perform hardness and adhesiveness assessments of the samples. Overall, the insect rice was found to have darker colour than the reference brown rice and to be softer and stickier in texture after cooking.

As a staple food providing 20% of the world’s dietary energy and consumed by more than 1 billion people, rice is an ideal vehicle to deliver nutrients carried by edible insects. The incorporation of insect flours in processed foods such as extruded rice products can greatly promote the consumer acceptance by disguising the ‘yuck’ factor associated with intact insects and this study showed that the texture of these products is not adversely affected by incorporating insect ingredients.

To read more, click or tap here... 

Insect innovation: Getting the right flavour and texture for your product is an online article including a report on some Finnish research on the best ways to process mealworms and crickets to get the optimal flavour and texture profile.

Click or tap here to read it... 

Silkworm pupae

Using sound for more accurate crispness testing
Acoustic Envelope Detector

Scientists from the Technical University of Munich have been investigating the classification of puffed snacks freshness based on crispiness-related mechanical and acoustical properties.

They used their TA.XTplus Texture Analyser to perform sound-insulated crushing tests on samples equilibrated at different humidity levels. Crispness is a very challenging property to measure using texture analysis alone, and so this study combined 70 different food properties via machine learning algorithms. Sensory panels then ranked crispiness-related freshness and preference based on the recorded sounds.

Selected feature combinations were used to train machine learning models to recognise the freshness levels at different humidity levels. The classification accuracy was improved compared with traditional texture analysis techniques and an accuracy of up to 92% could be achieved.

To read more, click or tap here... 

Scientists from Mustafa Kemal University have been researching the assessment of acoustic-mechanical measurements for the crispness of wafer products. They used their TA.XTplus Texture Analyser along with the Acoustic Envelope Detector to perform mechanical and acoustic fracture measurements on wafer samples – three point bend tests and a craft knife cutting test.

Both tests were found to be able to distinguish acoustic-mechanical properties of wafer products; wafers’ crispness could be differentiated by the parameters of the cutting test and their creaminess was related to mechanical parameters of the three point bend test. Force peaks number and maximum sound pressure showed correlation on both tests.

The study showed that these techniques are capable of differentiating crispy products of different qualities, in different ways.

To find out more, click or tap here... 


New advances in transcutaneous delivery

Researchers from Osaka University have been developing novel double-decker microneedle patches for transcutaneous vaccine delivery.

Two types of patch were assessed. Mechanical failure tests were performed with a TA.XTplus Texture Analyser. Each patch was loaded until failure. The required force for mechanical microneedle fracture was measured and the necessary fracture force per needle was calculated by dividing the measured fracture force by the number of fractured needles.

Click or tap here to read more... 

Meanwhile, scientists from Queen’s University Belfast have been investigating novel bilayer dissolving microneedle arrays with concentrated PLGA nanomicroparticles for targeted intradermal delivery. They used their TA.XT2 Texture Analyser to measure the mechanical and insertion properties of nano- and microparticle-loaded microneedle arrays.

These delivery systems continue to receive growing attention due to their ability to bypass the skin's stratum corneum barrier in a minimally-invasive fashion and achieve enhanced transdermal drug delivery and “targeted” intradermal vaccine administration. This study developed a two-stage novel processing strategy to provide a simple and easy method for localising particulate delivery systems into dissolving microneedle arrays.

Click or tap here to read more... 

Trancutaneous delivery patch

Investigating textural properties of freshwater fish
Sorting fish

Researchers from Federal Fluminense University in Brazil have been investigating instrumental texture parameters as freshness indicators in five farmed Brazilian freshwater fish species.

The aim of this study was to assess the chemical quality and instrumental texture parameters of the samples. Texture profile analysis was performed on standardised size fillets using their TA.XTplus Texture Analyser.

They found that with regard to the instrumental texture parameters, firmness, hardness, and chewiness decreased at the beginning of the storage period, whereas an increase was observed in springiness. All instrumental texture parameters demonstrated high correlations with ammonia and TCA-soluble peptides.

The increase in certain biogenic amines (putrescine, cadaverine, and spermine) seems to correlate well with decreases observed in firmness, hardness, and chewiness. In addition, a strong relationship was observed between the initial days of storage and instrumental texture parameters, while a significant correlation between the end of the storage and the chemical quality analyses was verified.

Firmness, hardness, chewiness, and cohesiveness were considered parameters with high potential in the evaluation of fish freshness during the first days of storage, whereas the chemical quality analyses and springiness were considered important for later evaluation of fish quality. Therefore, instrumental texture parameters may be used as quality indicators in the evaluation of freshwater fish freshness.

To find out more, click or tap here... 


Texture analysis in determination of 3d printability indicators

The printability of materials used in extrusion based 3D printing is one of the most important properties especially when fabricating objects with architectural complexities.

However, this parameter is influenced by several factors (temperature, components, and additives) which makes thorough evaluation and classification challenging. Researchers at Korea University have been investigating the printability of materials used in extrusion-based 3D printing, which is a very important property, particularly in materials with a complex structure.

Hydrocolloids were used as a reference material to simulate the printability of various types of food applications. After samples were prepared, they were subject to a number of tests including storage and dimensional stability, an assessment of handling properties and a 3D printing test. Additionally, Texture Profile Analysis was carried out using their TA.XTplus Texture Analyser.

The deformation behaviour and handling properties of selected food were classified based on the reference material which enables a printability classification system to be established based on the capability in dimensional stability and degree of handling.

Click or tap here to read more... 

Meanwhile, researchers from Jiangnan University have been investigating lemon juice gel as a food material for 3D printing and optimising printing parameters. Among rheological and NMR tests, texture profile analysis was used, carried out on a TA.XT2 Texture Analyser.

With the increase of starch content, the hardness, springiness, cohesiveness and gumminess of lemon juice gel was increased to different extents, resulting in a stronger ability to resist external damage.

The rheological properties were used as indicators to determine printability and provide basic research on 3D printing for other gel and starch products in this exciting area of new product development.

Click or tap here to read more... 

3D printer